Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
1.
Toxics ; 12(4)2024 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-38668511

RESUMEN

The increasing use of molybdate has raised concerns about its potential toxicity in humans. However, the potential toxicity of molybdate under the current level of human exposure remains largely unknown. Endogenous metabolic alterations that are caused in humans by environmental exposure to pollutants are associated with the occurrence and progression of many diseases. This study exposed eight-week-old male C57 mice to sodium molybdate at doses relevant to humans (0.01 and 1 mg/kg/day) for eight weeks. Inductively coupled plasma mass spectrometry (ICP-MS) and ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS) were utilized to assess changes in urine element levels and serum metabolites in mice, respectively. A total of 838 subjects from the NHANES 2017-2018 population database were also included in our study to verify the associations between molybdenum and cadmium found in mice. Analysis of the metabolome in mice revealed that four metabolites in blood serum exhibited significant changes, including 5-aminolevulinic acid, glycolic acid, l-acetylcarnitine, and 2,3-dihydroxypropyl octanoate. Analysis of the elementome revealed a significant increase in urine levels of cadmium after molybdate exposure in mice. Notably, molybdenum also showed a positive correlation with cadmium in humans from the NHANES database. Further analysis identified a positive correlation between cadmium and 2,3-dihydroxypropyl octanoate in mice. In conclusion, these findings suggest that molybdate exposure disrupted amino acid and lipid metabolism, which may be partially mediated by molybdate-altered cadmium levels. The integration of elementome and metabolome data provides sensitive information on molybdate-induced metabolic disorders and associated toxicities at levels relevant to human exposure.

2.
Theriogenology ; 220: 56-69, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38479090

RESUMEN

Metabolic coupling between oocytes and the surrounding somatic cells allows for normal two-way communication, and their interactions is necessary for generating developmentally competent eggs. However, the metabolic framework that support oocyte maturation in surrounding cumulus cells is still lacking. Herin, we established a temporal metabolome profile of porcine cumulus cells at three key stages during oocyte maturation, illustrating the picture of global metabolic network in cumulus cells. Importantly, we discovered the novel metabolic signature in cumulus cells during meiotic maturation, in specific, significant consumption of fatty acids, elevated activity of hexosamine biosynthetic pathway (HBP), and enhanced polyamine biosynthesis. Meanwhile, we observed the different utilization of tryptophan, active biosynthesis of progesterone, and progressive decrease in purine and pyrimidine metabolism as the oocytes progress through meiosis. Collectively, our metabolomic data serves an entree to elaborate on the dynamic changes in these metabolic pathways, which not only reveals the metabolic networks controlling oocyte development, but also lays a foundation for the discovery of biomarkers in the improvement in porcine oocyte culture system.


Asunto(s)
Células del Cúmulo , Oocitos , Femenino , Animales , Porcinos , Células del Cúmulo/metabolismo , Oogénesis , Meiosis
3.
Theriogenology ; 218: 69-78, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38301509

RESUMEN

Well-balanced and orderly metabolism is a crucial prerequisite for promoting oogenesis. Involvement of single metabolites in oocyte development has been widely reported; however, the comprehensive metabolic framework controlling oocyte maturation is still lacking. In the present study, we employed an integrated temporal metabolomic and transcriptomic method to analyze metabolism in goat oocytes at GV, GVBD, and MII stages (GV, fully-grown immature oocyte; GVBD, stage of meiotic resumption; MII, mature oocyte) during in vitro maturation, revealing the global picture of the metabolic patterns during maturation. In particular, several significantly altered metabolic pathways during goat oocyte meiosis have been identified, including active serine metabolism, increased utilization of tryptophan, and marked accumulation of purine nucleotide. In summary, the current study provides transcriptomic and metabolomic datasets for goat oocyte development that can be applied in cross-species comparative studies.


Asunto(s)
Cabras , Oocitos , Animales , Oogénesis , Meiosis , Perfilación de la Expresión Génica/veterinaria
5.
J Ovarian Res ; 16(1): 156, 2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37550748

RESUMEN

Bi-directional communication between cumulus cells and the surrounded oocytes is important for the development and functions of both compartments. However, the metabolic framework in cumulus cells has not been systematically described. In the present study, cumulus cells from cumulus-oocyte complexes (COCs) at three key time points were isolated (arrested GV stage, post-hCG 0h; meiotic resumption GVBD stage, post-hCG 3h; and metaphase II stage, post-hCG 12h), and the temporal metabolomic and proteomic profiling were performed. Integrated multi-omics analysis reveals the global metabolic patterns in cumulus cells during mouse oocyte maturation. In particular, we found the active hyaluronic acid metabolism, steroid hormone synthesis, and prostaglandin E2 (PGE2) production in cumulus cells. Meanwhile, accompanying the oocyte maturation, a progressive increase in nucleotide and amino acid metabolism was detected in the surrounding cumulus cells. In sum, the data serve as a valuable resource for probing metabolism during terminal differentiation of ovarian granulosa cells, and provide the potential biomarkers for improving and predicting oocyte quality.


Asunto(s)
Células del Cúmulo , Multiómica , Femenino , Ratones , Animales , Células del Cúmulo/metabolismo , Proteómica , Oocitos/metabolismo , Oogénesis , Meiosis
6.
Front Oncol ; 13: 1202151, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37496661

RESUMEN

Background: Clear cell renal cell carcinoma (ccRCC) is a malignant disease containing tumor-infiltrating lymphocytes. Reactive oxygen species (ROS) are present in the tumor microenvironment and are strongly associated with cancer development. Nevertheless, the role of ROS-related genes in ccRCC remains unclear. Methods: We describe the expression patterns of ROS-related genes in ccRCC from The Cancer Genome Atlas and their alterations in genetics and transcription. An ROS-related gene signature was constructed and verified in three datasets and immunohistochemical staining (IHC) analysis. The immune characteristics of the two risk groups divided by the signature were clarified. The sensitivity to immunotherapy and targeted therapy was investigated. Results: Our signature was constructed on the basis of glutamate-cysteine ligase modifier subunit (GCLM), interaction protein for cytohesin exchange factors 1 (ICEF1), methionine sulfoxide reductase A (MsrA), and strawberry notch homolog 2 (SBNO2) genes. More importantly, protein expression levels of GCLM, MsrA, and SBNO2 were detected by IHC in our own ccRCC samples. The high-risk group of patients with ccRCC suffered lower overall survival rates. As an independent predictor of prognosis, our signature exhibited a strong association with clinicopathological features. An accurate nomogram for improving the clinical applicability of our signature was constructed. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses showed that the signature was closely related to immune response, immune activation, and immune pathways. The comprehensive results revealed that the high-risk group was associated with high infiltration of regulatory T cells and CD8+ T cells and more benefited from targeted therapy. In addition, immunotherapy had better therapeutic effects in the high-risk group. Conclusion: Our signature paved the way for assessing prognosis and developing more effective strategies of immunotherapy and targeted therapy in ccRCC.

7.
Front Endocrinol (Lausanne) ; 14: 1131256, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36817597

RESUMEN

Well-controlled metabolism is the prerequisite for optimal oocyte development. To date, numerous studies have focused mainly on the utilization of exogenous substrates by oocytes, whereas the underlying mechanism of intrinsic regulation during meiotic maturation is less characterized. Herein, we performed an integrated analysis of parallel metabolomics and transcriptomics by isolating porcine oocytes at three time points, cooperatively depicting the global picture of the metabolic patterns during maturation. In particular, we identified the novel metabolic features during porcine oocyte meiosis, such as the fall in bile acids, the active one-carbon metabolism and a progressive decline in nucleotide metabolism. Collectively, the current study not only provides a comprehensive multiple omics data resource, but also may facilitate the discovery of molecular biomarkers that could be used to predict and improve oocyte quality.


Asunto(s)
Oocitos , Transcriptoma , Porcinos , Animales , Oocitos/metabolismo , Oogénesis/fisiología , Perfilación de la Expresión Génica , Meiosis
8.
Toxics ; 12(1)2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-38250970

RESUMEN

Metabolism underlies the pathogenesis of acute myeloid leukemia (AML) and can be influenced by gut microbiota. However, the specific metabolic changes in different tissues and the role of gut microbiota in AML remain unclear. In this study, we analyzed the metabolome differences in blood samples from patients with AML and healthy controls using UPLC-Q-Exactive. Additionally, we examined the serum, liver, and fecal metabolome of AML model mice and control mice using UPLC-Q-Exactive. The gut microbiota of the mice were analyzed using 16S rRNA sequencing. Our UPLC-MS analysis revealed significant differences in metabolites between the AML and control groups in multiple tissue samples. Through cross-species validation in humans and animals, as well as reverse validation of Celastrol, we discovered that the Carnosine-Histidine metabolic pathway may play a potential role in the occurrence and progression of AML. Furthermore, our analysis of gut microbiota showed no significant diversity changes, but we observed a significant negative correlation between the key metabolite Carnosine and Peptococcaceae and Campylobacteraceae. In conclusion, the Carnosine-Histidine metabolic pathway influences the occurrence and progression of AML, while the gut microbiota might play a role in this process.

9.
Natl Sci Rev ; 9(10): nwac136, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36325113

RESUMEN

Mitochondria are essential for female reproductive processes, yet the function of mitochondrial DNA (mtDNA) mutation in oocytes remains elusive. By employing an mtDNA mutator (Polgm) mouse model, we found the fetal growth retardation and placental dysfunction in post-implantation embryos derived from Polgm oocytes. Remarkably, Polgm oocytes displayed the global loss of DNA methylation; following fertilization, zygotic genome experienced insufficient demethylation, along with dysregulation of gene expression. Spindle-chromosome exchange experiment revealed that cytoplasmic factors in Polgm oocytes are responsible for such a deficient epigenetic remodeling. Moreover, metabolomic profiling identified a significant reduction in the α-ketoglutarate (αKG) level in oocytes from Polgm mice. Importantly, αKG supplement restored both DNA methylation state and transcriptional activity in Polgm embryos, consequently preventing the developmental defects. Our findings uncover the important role of oocyte mtDNA mutation in controlling epigenetic reprogramming and gene expression during embryogenesis. αKG deserves further evaluation as a potential drug for treating mitochondrial dysfunction-related fertility decline.

10.
Commun Biol ; 5(1): 763, 2022 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-35906399

RESUMEN

In order to investigate the metabolic characteristics of human follicular fluid (FF) and to reveal potential metabolic predictors of follicular development (FD) with clinical implications, we analyzed a total of 452 samples based on a two-stage study design. In the first stage, FF samples from both large follicles (LFs) and matched-small follicles (SFs) of 26 participants were analyzed with wide-spectrum targeted metabolomics. The metabolic signatures were described by multi-omics integration technology including metabolomic data and transcriptomic data. In the second stage, the potential biomarkers of FD were verified using enzyme-linked immunoassay with FF and blood serum from an independent 200 participants. We describe the FF metabolic signatures from ovarian follicles of different developmental stages. Lysophosphatidylcholine (LPC) can be used as a biomarker of FD and ovarian sensitivity, advancing the knowledge of metabolic regulation during FD and offering potential detection and therapeutic targets for follicle and oocyte health improvements in humans.


Asunto(s)
Líquido Folicular , Lisofosfatidilcolinas , Femenino , Líquido Folicular/metabolismo , Humanos , Lisofosfatidilcolinas/metabolismo , Oocitos/metabolismo , Folículo Ovárico/metabolismo
11.
Front Endocrinol (Lausanne) ; 13: 832577, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35600587

RESUMEN

Background: Intrahepatic cholestasis of pregnancy (ICP) is closely related to the occurrence of adverse outcomes. Currently, total bile acids (TBAs) are the only diagnostic index for ICP, and its sensitivity and specificity have certain limitations. In this study, we aimed to develop potential biomarkers for the diagnosis of ICP. Methods: Sixty pregnant women diagnosed with ICP and 48 healthy pregnant controls were enrolled in this study. We used the Agilent microRNA (miRNA) array followed by quantitative reverse transcriptase polymerase chain reaction assays to identify and validate the serum exosome miRNA profiles in ICP and healthy pregnant controls. We employed bioinformatics to identify metabolic processes associated with differentially expressed serum exosome miRNAs. Results: The expression levels of hsa-miR-4271, hsa-miR-1275, and hsa-miR-6891-5p in maternal serum exosomes were significantly lower in ICP patients compared to controls; the diagnostic accuracy of hsa-miR-4271, hsa-miR-1275, and hsa-miR-6891-5p was evaluated with the area under the receiver operating characteristic curve (AUC) values of 0.861, 0.886, and 0.838, respectively. Multiple logistic regression analysis showed that a combination of the levels of hsa-miR-4271and hsa-miR-1275 afforded a significantly higher AUC (0.982). The non-error rate of a combination of all three exosome miRNAs was the highest (95%), thus more reliable ICP diagnosis. The expression levels of all three exosome miRNAs were negatively associated with TBAs. Furthermore, according to bioinformatics analysis, the three exosome miRNAs were related to lipid metabolism, apoptosis, oxidative stress, and the Mitogen Activated Protein Kinase (MAPK) signaling pathway. Conclusions: This study may identify the novel non-invasive biomarkers for ICP and provided new insights into the important role of the exosome miRNA regulation in ICP.


Asunto(s)
Colestasis Intrahepática , Exosomas , MicroARNs , Biomarcadores , Colestasis Intrahepática/diagnóstico , Colestasis Intrahepática/genética , Colestasis Intrahepática/metabolismo , Exosomas/genética , Exosomas/metabolismo , Femenino , Humanos , MicroARNs/metabolismo , Embarazo , Complicaciones del Embarazo
12.
Environ Health Perspect ; 130(3): 37003, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35254863

RESUMEN

BACKGROUND: Maternal exposure to environmental chemicals during pregnancy can influence various maternal and offspring health parameters. Modification of maternal metabolism by environmental exposure may be an important pathway for these impacts. However, there is limited evidence regarding exposure to a wide array of chemicals and the metabolome during pregnancy. OBJECTIVES: We investigated the relationship between the urinary exposome and metabolome during pregnancy. METHODS: Urine samples were collected in the first and third trimesters from 1,024 pregnant women recruited in prenatal clinics in Jiangsu Province, China. The exposome was analyzed using the first trimester sample with ultra-high performance liquid chromatography-high resolution accurate mass spectrometry (UHPLC-HRMS) and inductively coupled plasma mass spectrometry. The metabolome was analyzed using the third trimester sample with UHPLC-HRMS. We evaluated associations between each of 106 exposures in the first trimester with 139 metabolites in the third trimester. RESULTS: We identified 1,245 significant associations (p<3.39×10-6, Bonferroni correction) between chemical exposures and maternal metabolism during pregnancy. Among elements, the largest number of the significant metabolic associations were observed for magnesium, and among organic compounds, for 4-tert-octylphenol. We used exposome-metabolome associations to explore mechanisms underlying published associations between prenatal chemical exposures and offspring health outcomes. This integration of the literature with our results suggests that reported associations between 10 analytes and birth weight, gestational age, fat deposition, neurobehavioral development, immunological disorders, and hypertension may be partially mediated by metabolites associated with these exposures. DISCUSSION: This high-dimensional analysis of the urinary exposome and metabolome identified many associations between chemical exposures and maternal metabolism during pregnancy. Integration of these associations with the literature on health outcomes of exposure suggests that environmental modulation of the maternal metabolome may play a role in the association between prenatal exposure on pregnancy and child health outcomes. https://doi.org/10.1289/EHP9745.


Asunto(s)
Exposoma , Peso al Nacer , Niño , Exposición a Riesgos Ambientales/análisis , Femenino , Humanos , Exposición Materna , Metaboloma , Embarazo
13.
Chemosphere ; 298: 134296, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35301995

RESUMEN

Di-(2-ethylhexyl) phthalate (DEHP) is a widely used plasticizer and has been identified as a male prenatal reproductive toxicant. A high fat diet (HFD) has also been suggested as another potential disruptor of male reproductive function. Despite this potential synergism between DEHP exposure and HFD, little is known about the concomitant effects of prenatal DEHP and a subsequent HFD exposure on male offspring reproductive injury. Here we established a mouse model of prenatal exposure to DEHP (0.2 mg/kg/day) to assess the testicular development and spermatogenesis in offspring subjected to obesogenic diet during the pubertal period. Gross phenotype, hormone profiles and the testicular metabolome were analyzed to determine the underlying mechanism. We found that prenatal exposure to low-dose DEHP resulted in decreased sperm density, decreased testosterone (T) levels, increased luteinizing hormone (LH) levels and testicular germ cell apoptosis. Furthermore, these injury phenotypes were aggravated by pubertal HFD treatment. Testicular riboflavin and biotin metabolites were enriched implying their roles in contributing HFD to exacerbate offspring spermatogenesis disorders due to prenatal low-dose DEHP exposure. Our findings suggest that pubertal HFD exacerbates reproductive dysfunction associated with prenatal exposure to low-dose DEHP in male adult offspring.


Asunto(s)
Dietilhexil Ftalato , Efectos Tardíos de la Exposición Prenatal , Animales , Dieta Alta en Grasa/efectos adversos , Dietilhexil Ftalato/metabolismo , Femenino , Humanos , Masculino , Ratones , Embarazo , Efectos Tardíos de la Exposición Prenatal/metabolismo , Espermatogénesis , Testículo
14.
Environ Pollut ; 300: 118994, 2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-35167929

RESUMEN

Some studies have examined the association between air pollution and semen quality. While it is less of evidence on the sperm quality after long-term air pollution exposure, especially the co-exposure of different air pollution components. Additionally, the role of DNA methylation in it hasn't been confirmed. This study aimed to investigate whether long-term exposure to air pollution was associated with semen quality, as well as to explore the effect of sperm DNA methylation in such association. From 2014 to 2016, 1607 fertile men were enrolled to evaluate 14 parameters of semen quality. Exposure window was defined as one-year before semen sampling. Multivariable linear regression and weighted quantile sum (WQS) regression model were used to investigate the association between six air pollutants co-exposure and semen quality. Sensitivity analysis regarding at the normal semen quality group was also conducted. Semen samples were randomly selected from 200 participants to detect the genomic 5-methylcytosine (5 mC) and 5-hydroxymethylcytosine (5-hmC) levels in sperm. In the total population, PM10, PM2.5, SO2, and NO2 were negatively associated with sperm total motility (PM10: ß = -2.67, P = 0.009; PM2.5: ß = -2.86, P = 0.004; SO2: ß = -2.32, P = 0.011; NO2: ß = -2.21, P = 0.012). Results of the normal semen quality group were consistent with those from the whole population. WQS regression results indicated significant decreasing sperm total motility after the co-exposure of the six air pollutants (ß = -1.64, P = 0.003) in whole participants. Wherein, PM10 accounted for largest proportion (43.4%). The 5-hmC level was positively associated with PM10 exposure (ß = 0.002, P < 0.001). Long-term exposure to PM10, PM2.5, SO2, and NO2, as well as co-exposure to six air pollutants, reduced semen quality in fertile men. As the most significant contributor of air pollutant, PM10 exposure decreased sperm DNA methylation.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/toxicidad , Contaminación del Aire/análisis , Estudios Transversales , Metilación de ADN , Humanos , Masculino , Material Particulado/análisis , Análisis de Semen , Espermatozoides
15.
Ecotoxicol Environ Saf ; 233: 113347, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35219956

RESUMEN

Benzophenone-3 (BP-3) is widely used in a variety of cosmetics and is prevalent in drinking water or food, and women were under notable high exposure burden of BP-3. Reports show the associations between prenatal exposure to BP-3 and the risk of fetal loss, but its underlying mechanism remains largely unknown. Pregnant ICR mice were gavaged with BP-3 from gestational day (GD) 0 to GD 6 at doses of 0.1, 10 and 1000 mg/kg/day. The samples were collected on GD 12. Ultra-performance liquid chromatography coupled with mass spectrometry-based metabolomics was used to detect metabolome changes in fetal mice, the uterus and the placenta to identify the underlying mechanism. The results showed that the body weight and relative organ weights of the liver, brain and uterus of pregnant mice were not significantly changed between the control group and the treatment group. BP-3 increased fetal loss, and induced placental thrombosis and tissue necrosis with enhancement of platelet aggregation. Metabolomic analysis revealed that fructose and mannose metabolism, the TCA cycle, arginine and proline metabolism in the fetus, arginine and proline metabolism and biotin metabolism in the uterus, and arginine biosynthesis and pyrimidine metabolism in the placenta were the key changed pathways involved in the above changes. Our study indicates that exposure to BP-3 can induce placental thrombosis and fetal loss via the disruption of maternal and fetal metabolism in mice, providing novel insights into the influence of BP-3 toxicity on the female reproductive system.


Asunto(s)
Placenta , Efectos Tardíos de la Exposición Prenatal , Animales , Benzofenonas , Femenino , Feto , Metabolómica , Ratones , Ratones Endogámicos ICR , Embarazo
16.
Front Immunol ; 12: 733225, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34721396

RESUMEN

Background: Intrahepatic cholestasis of pregnancy (ICP) usually occurs in the third trimester and is associated with increased risks in fetal complications. Currently, the exact mechanism of this disease is unknown. The purpose of this study was to develop potential biomarkers for the diagnosis and prediction of ICP. Methods: We enrolled 40 pregnant women diagnosed with ICP and 40 healthy pregnant controls. The number of placental samples and serum samples between the two groups was 10 and 40 respectively. Ultra-performance liquid chromatography tandem high-resolution mass spectrometry was used to analyze placental metabolomics. Then, we verified the differentially expressed proteins and metabolites, both placental and blood serum, in the first, second, and third trimesters. Results: Metabolomic analysis of placental tissue revealed that fatty acid metabolism and primary bile acid biosynthesis were enriched. In the integrated proteomic and metabolomic analysis of placental tissue, peroxisomal acyl-CoA oxidase 1 (ACOX1), L-palmitoylcarnitine, and glycocholic acid were found to be three potential biomarkers. In a follow-up analysis, expression levels of both placental and serum ACOX1, L-palmitoylcarnitine, and glycocholic acid in both placenta and serum were found to be significantly higher in third-trimester ICP patients; the areas under the ROC curves were 0.823, 0.896, and 0.985, respectively. Expression levels of serum ACOX1, L-palmitoylcarnitine, and glycocholic acid were also significantly higher in first- and second-trimester ICP patients; the areas under the ROC curves were 0.726, 0.657, and 0.686 in the first trimester and 0.718, 0.727, and 0.670 in the second trimester, respectively. Together, levels of the three aforementioned biomarkers increased the value for diagnosing and predicting ICP (AUC: 0.993 for the third, 0.891 for the second, and 0.932 for the first trimesters). Conclusions: L-palmitoylcarnitine, ACOX1, and glycocholic acid levels taken together may serve as a new biomarker set for the diagnosis and prediction of ICP.


Asunto(s)
Colestasis Intrahepática/sangre , Metaboloma , Metabolómica , Placenta/metabolismo , Complicaciones del Embarazo/sangre , Proteoma , Proteómica , Acil-CoA Oxidasa/sangre , Adulto , Biomarcadores/sangre , Colestasis Intrahepática/diagnóstico , Cromatografía Liquida , Femenino , Ácido Glicocólico/sangre , Humanos , Palmitoilcarnitina/sangre , Valor Predictivo de las Pruebas , Embarazo , Complicaciones del Embarazo/diagnóstico , Espectrometría de Masas en Tándem , Adulto Joven
17.
Toxicol Res (Camb) ; 10(4): 706-718, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34484662

RESUMEN

Benzene, a known occupational and environmental contaminant, has been recognized as the hematotoxin and human carcinogen. Lipids have a variety of important physiological functions and the abnormal lipid metabolism has been reported to be closely related to the occurrence and development of many diseases. In the present study, we aim to utilize LC-MS/MS lipidomic platform to identify novel biomarkers and provide scientific clues for mechanism study of benzene hematotoxicity. Results showed that a total of 294 differential metabolites were obtained from the comparison of benzene-treated group and control group. The glycerophospholipid pathway was altered involving the down-regulation of the levels of phosphatidylcholine and phosphatidylserine. In addition, phosphatidylethanolamine (PE) and 1-Acyl-sn-glycero-3-phosphocholine levels were increased in benzene-treated group. Based on the relationship between PE and autophagy, we then found that effective biomarker of autophagy, Beclin1 and LC3B, were increased remarkably. Furthermore, following benzene treatment, significant decreases in glucosylceramide (GlcCer) and phytosphingosine (PHS) levels in sphingolipid pathway were observed. Simultaneously, the levels of proliferation marker (PCNA and Ki67) and apoptosis regulator (Bax and Caspase-3) showed clear increases in benzene-exposed group. Based on our results, we speculate that disturbances in glycerophospholipid pathway play an important role in the process of benzene-induced hematopoietic toxicity by affecting autophagy, while sphingolipid pathway may also serve as a vital role in benzene-caused toxicity by regulating proliferation and apoptosis. Our study provides basic study information for the future biomarker and mechanism research underlying the development of benzene-induced blood toxicity.

18.
Cell Res ; 31(8): 919-928, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34108666

RESUMEN

Emerging evidence suggests that children conceived through assisted reproductive technology (ART) have a higher risk of congenital heart defects (CHDs) even when there is no family history. De novo mutation (DNM) is a well-known cause of sporadic congenital diseases; however, whether ART procedures increase the number of germline DNM (gDNM) has not yet been well studied. Here, we performed whole-genome sequencing of 1137 individuals from 160 families conceived through ART and 205 families conceived spontaneously. Children conceived via ART carried 4.59 more gDNMs than children conceived spontaneously, including 3.32 paternal and 1.26 maternal DNMs, after correcting for parental age at conception, cigarette smoking, alcohol drinking, and exercise behaviors. Paternal DNMs in offspring conceived via ART are characterized by C>T substitutions at CpG sites, which potentially affect protein-coding genes and are significantly associated with the increased risk of CHD. In addition, the accumulation of non-coding functional mutations was independently associated with CHD and 87.9% of the mutations were originated from the father. Among ART offspring, infertility of the father was associated with elevated paternal DNMs; usage of both recombinant and urinary follicle-stimulating hormone and high-dosage human chorionic gonadotropin trigger was associated with an increase of maternal DNMs. In sum, the increased gDNMs in offspring conceived by ART were primarily originated from fathers, indicating that ART itself may not be a major reason for the accumulation of gDNMs. Our findings emphasize the importance of evaluating the germline status of the fathers in families with the use of ART.


Asunto(s)
Cardiopatías Congénitas , Técnicas Reproductivas Asistidas , Cohorte de Nacimiento , Estudios de Cohortes , Células Germinativas , Cardiopatías Congénitas/genética , Humanos , Mutación , Estudios Prospectivos , Técnicas Reproductivas Asistidas/efectos adversos
19.
Ecotoxicol Environ Saf ; 218: 112296, 2021 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-33962271

RESUMEN

Microplastics (MPs) are currently a global environmental pollutants and health hazards that caused by MPs cannot be ignored. However, studies on MP toxicity in mammals are scare. Here, we investigated the effects of two doses (0.1 mg and 0.5 mg) of 5 µm polystyrene microplastic (PS-MP) particles on the hematological system of mice through traditional toxicology experiments and assessed the related potential biological mechanisms using transcriptome sequencing analysis. The toxicological examinations showed that the 0.5 mg dose significantly decreased white blood cell count, increased Pit count, and inhibited the growth of colony-forming unit CFU-G, CFU-M and CFU-GM. Compared with the control group, there were 41 differentially expressed genes (DEGs) in the 0.1 mg-treated group and 32 significantly changed genes in 0.5 mg-treated group. Of note, eight genes were found to be significantly altered in both the PS-MP-treated groups. Gene ontology analysis showed that DEGs were mainly involved in T cell homeostasis, response to osmotic stress, extracellular matrix and structure organization, and metabolic process of NADP and nucleotides. In addition, pathway analysis revealed that the Jak/Stat pathway, pentose and glucuronate interconversions, nicotinate and nicotinamide metabolism, biosynthesis of unsaturated fatty acids, and the pentose phosphate pathway were involved in PS-MP-induced toxicity in mice. These results indicated that PS-MP exposure can cause hematotoxicity to some extent, impact gene expression, and disturb related molecular and biological pathways in mouse bone marrow cells. Our study provides fundamental data on the hematotoxicity of PS-MPs in terrestrial mammals that will help to further assess the corresponding health risks in these mammals.

20.
BMC Med ; 19(1): 120, 2021 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-34039350

RESUMEN

BACKGROUND: Gestational diabetes mellitus (GDM) is a metabolic disease that occurs in pregnant women and increases the risk for the development of diabetes. The relationship between GDM and meconium microbiota and metabolome remains incompletely understood. METHODS: Four hundred eighteen mothers (147 women with GDM and 271 normal pregnant women) and their neonates from the GDM Mother and Child Study were included in this study. Meconium microbiota were profiled by 16S rRNA gene sequencing. Meconium and maternal serum metabolome were examined by UPLC-QE. RESULTS: Microbial communities in meconium were significantly altered in neonates from the GDM mothers. A reduction in alpha diversity was observed in neonates of GDM mothers. At the phylum level, the abundance of Firmicutes and Proteobacteria changed significantly in neonates of GDM mothers. Metabolomic analysis of meconium showed that metabolic pathways including taurine and hypotaurine metabolism, pyrimidine metabolism, beta-alanine metabolism, and bile acid biosynthesis were altered in GDM subjects. Several changed metabolites varying by the similar trend across the maternal serum and neonatal meconium were observed. CONCLUSION: Altogether, these findings suggest that GDM could alter the serum metabolome and is associated with the neonatal meconium microbiota and metabolome, highlighting the importance of maternal factors on early-life metabolism.


Asunto(s)
Diabetes Gestacional , Microbioma Gastrointestinal , Femenino , Humanos , Recién Nacido , Meconio , Metaboloma , Embarazo , ARN Ribosómico 16S/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA